Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation

An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replac...

متن کامل

Unsupervised Basis Function Adaptation for Reinforcement Learning

When using reinforcement learning (RL) algorithms to evaluate a policy it is common, given a large state space, to introduce some form of approximation architecture for the value function (VF). The exact form of this architecture can have a significant effect on the accuracy of the VF estimate, however, and determining a suitable approximation architecture can often be a highly complex task. Co...

متن کامل

Basis Adaptation for Sparse Nonlinear Reinforcement Learning

This paper presents a new approach to representation discovery in reinforcement learning (RL) using basis adaptation. We introduce a general framework for basis adaptation as nonlinear separable least-squares value function approximation based on finding Fréchet gradients of an error function using variable projection functionals. We then present a scalable proximal gradientbased approach for b...

متن کامل

A Dynamic Allocation Method of Basis Functions in Reinforcement Learning

In this paper, we propose a dynamic allocation method of basis functions, an Allocation/Elimination Gaussian Softmax Basis Function Network (AE-GSBFN), that is used in reinforcement learning. AEGSBFN is a kind of actor-critic method that uses basis functions. This method can treat continuous high-dimensional state spaces, because basis functions required only for learning are dynamically alloca...

متن کامل

Basis Function Adaptation in Temporal Difference Reinforcement Learning

We examine methods for on-line optimization of the basis function for temporal difference Reinforcement Learning algorithms. We concentrate on architectures with a linear parameterization of the value function. Our methods optimize the weights of the network while simultaneously adapting the parameters of the basis functions in order to decrease the Bellman approximation error. A gradient-based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

سال: 2008

ISSN: 0916-8508,1745-1337

DOI: 10.1093/ietfec/e91-a.4.1169